设函数f(x)>0连续,D是圆盘x^2+y^2
1个回答

圆方程x²+y²≤x+y可改写为:(x-1/2)²+(y-1/2)²≤1/2

积分区域关于x与y是轮换对称的,因此有

∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy

因此有:

∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy

=1/2{∫∫f(x)/[f(x)+f(y)]dxdy+∫∫f(y)/[f(x)+f(y)]dxdy}

=1/2∫∫[f(x)+f(y)]/[f(x)+f(y)]dxdy

=1/2∫∫1dxdy

被积函数为1,积分结果为区域面积,圆面积为:π/2

因此:∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy=π/4

原积分=∫∫(af(x)+bf(y))/(f(x)+f(y)) dxdy

=a∫∫f(x)/[f(x)+f(y)]dxdy+b∫∫f(y)/[f(x)+f(y)]dxdy

=πa/4+πb/4

=π(a+b)/4