圆方程x²+y²≤x+y可改写为:(x-1/2)²+(y-1/2)²≤1/2
积分区域关于x与y是轮换对称的,因此有
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
因此有:
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
=1/2{∫∫f(x)/[f(x)+f(y)]dxdy+∫∫f(y)/[f(x)+f(y)]dxdy}
=1/2∫∫[f(x)+f(y)]/[f(x)+f(y)]dxdy
=1/2∫∫1dxdy
被积函数为1,积分结果为区域面积,圆面积为:π/2
因此:∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy=π/4
原积分=∫∫(af(x)+bf(y))/(f(x)+f(y)) dxdy
=a∫∫f(x)/[f(x)+f(y)]dxdy+b∫∫f(y)/[f(x)+f(y)]dxdy
=πa/4+πb/4
=π(a+b)/4