等差数列{ a n }中a 3 =7,a 1 +a 2 +a 3 =12,记S n 为{a n }的前n项和,
1个回答

(1)设数列{a n}的公差为d,

由a 3=a 1+2d=7,a 1+a 2+a 3=3a 1+3d=12,

解得a 1=1,d=3,

∴a n=3n-2,

S n =n+

n(n-1)

2 ×3 =

3n 2 -n

2 .

(2)∵b n=a na n+1=(3n-2)(3n+1),

1

b n =

1

(3n-2)(3n+1) =

1

3 (

1

3n-2 -

1

3n+1 ) ,

T n =

1

3 (1-

1

4 +

1

4 -

1

7 +

1

7 -

1

11 +…+

1

3n-5 -

1

3n-2 +

1

3n-2 -

1

3n+1 )

=

1

3 (1-

1

3n+1 )<

1

3 .

(3)由(2)知, T n =

n

3n+1 ,∴ T 1 =

1

4 , T m =

m

3m+1 , T n =

n

3n+1 ,

∵T 1,Tm,Tn成等比数列,

∴ (

m

3m+1 ) 2 =

1

4 ×

n

3n+1 ,

6m+1

m 2 =

3n+4

n ,

当m=1时,7=

3n+4

n ,n=1,不合题意;

当m=2时,

13

4 =

3n+4

n ,n=16,符合题意;

当m=3时,

19

9 =

3n+4

n ,n无正整数解;

当m=4时,

25

16 =

3n+4

n ,n无正整数解;

当m=5时,

31

25 =

3n+4

n ,n无正整数解;

当m=6时,

37

36 =

3n+4

n ,n无正整数解;

当m≥7时,m 2-6m-1=(m-3) 2-10>0,

6m+1

m 2 <1 ,而

3n+4

n =3+

4

n >3 ,

所以,此时不存在正整数m,n,且7<m<n,使得T 1,Tm,Tn成等比数列.

综上,存在正整数m=2,n=16,且1<m<n,使得T 1,Tm,Tn成等比数列.