O为三角形ABC所在平面上任一点,AO.BO.CO与BC.CA.AB交于D.E.F.作EG//AD//FH,点G.H均在直线BC上,求证 BD/DC =(DH/HC)*(BG/DG)
证明:
设FC,GE交点为M;
BE,FH交点为N;
DH/HC=OF/FC=OF/(OF+OM+MC);
BG/DG=BE/OE=(BN+NO+OE)/OE;
而OF/OM=ON/OE,设其为k;
故(DH/HC)*(BG/DG)=1/{[1+1/k+(MC/OF)]·[(BN/OE)+k+1]}
=k/[k+1+k·(MC/OF)]·[(BN/OE)+k+1]}
=.
=BD/DC.