数列{an},{bn}的各项均为正数,a1=1,b1=2,且对于任意自然数n, lg bn、lg a(n+1)、lg b
1个回答

由于:

5^[an],5^[bn],5^[a(n+1)]成等比数列

则有:

{5^[bn]}^2=5^[an]*5^[a(n+1)]

5^[bn^2]=5^[an+a(n+1)]

则:

2bn=an+a(n+1) -----(1)

由于:

lg[bn],lg[a(n+1)],lg[b(n+1)]成等差数列

则有:

2lg[a(n+1)]=lg[bn]+lg[b(n+1)]

lg[a(n+1)^2]=lg[bn*b(n+1)]

则:

[a(n+1)]^2=bn*b(n+1) -----(2)

则:

[an]=b(n-1)*bn -----(3)

由于数列{an}和{bn}各项均为正数

则由(2)(3)得:

a(n+1)=sqr[bn*b(n+1)]

an=sqr[b(n-1)*bn]

将以上两式代入(1)得:

2bn=sqr[bn*b(n+1)]+sqr[b(n-1)*bn]

2[sqrbn]^2=sqr[bn*b(n+1)]+sqr[b(n-1)*bn]

2sqr[bn]=sqr[b(n+1)]+sqr[b(n-1)]

设cn=sqr[bn]

则有:

2cn=c(n+1)+c(n-1)

c(n+1)-cn=cn-c(n-1)=.=c1-c1

c(n+1)-cn=[c2-c1]=sqr(2)/2

c2-c1=sqr(2)/2

c3-c2=sqr(2)/2

c4-c3=sqr(2)/2

.

c(n+1)-cn=qr(2)/2

把上式累加得

则:cn=c1+(n-1)(sqr(2)/2)因为(以c1=sqr(b1)=sqr(2))

=(n+1)/sqr(2)

则:bn=(cn)^2=(n+1)^2/2

则:an=sqr[b(n-1)*bn]=[n(n+1)]/2