已知数列{an}的前n项和为Sn=(an+1)^2/4,求{an}的通项an
3个回答

a1=S1=(a1+1)^2/4

4a1=(a1)^2+2a1+1

(a1)^2-2a1+1=0

(a1-1)^2=0

a1=1

Sn=(an+1)^2/4

S(n-1)=[a(n-1)+1]^2/4

an=Sn-S(n-1)

=(an+1)^2/4-[a(n-1)+1]^2/4

4an=(an+1)^2-[a(n-1)+1]^2

4an=(an)^2+2an+1-[(a(n-1)]^2-2a(n-1)-1

(an)^2-2an-[(a(n-1)]^2-2a(n-1)=0

(an)^2-[(a(n-1)]^2-2an-2a(n-1)=0

[an-a(n-1)][an+a(n-1)]-2[an+a(n-1)]=0

[an-a(n-1)-2][an+a(n-1)]=0

[an-a(n-1)-2]=0或[an+a(n-1)]=0

an-a(n-1)=2或an=-a(n-1)

an-a(n-1)=2或an/a(n-1)=-1

当a1=1,d=an-a(n-1)=2时,该数列为等差数列

an=a1+(n-1)d

=1+2(n-1)

=2n-1

当a1=1,q=an/a(n-1)=-1时,该数列为等比数列

an=a1q^(n-1)

=1*(-1)^(n-1)

=(-1)^(n-1)