解题思路:(1)①先根据等腰三角形等角对等边的性质及三角形内角和定理得出∠DAE=∠BAC,则∠BAD=∠CAE,再根据SAS证明△ABD≌△ACE,从而得出BD=CE;
②先由全等三角形的对应角相等得出∠BDA=∠CEA,再根据三角形的外角性质即可得出∠BMC=∠DAE=180°-2α;
(2)先根据等腰三角形等角对等边的性质及三角形内角和定理得出∠DAE=∠BAC=90°-[1/2]α,则∠BAD=∠CAE,再由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,则根据两边对应成比例,且夹角相等的两三角形相似证出△ABD∽△ACE,得出BD=kCE,∠BDA=∠CEA,然后根据三角形的外角性质即可得出∠BMC=∠DAE=90°-[1/2]α;
(3)先在备用图中利用SSS作出旋转后的图形,再根据等腰三角形等角对等边的性质及三角形内角和定理得出∠DAE=∠BAC=90°-[1/2]α,由AB=kAC,AD=kAE,得出AB:AC=AD:AE=k,从而证出△ABD∽△ACE,得出∠BDA=∠CEA,然后根据三角形的外角性质即可得出∠BMC=90°+[1/2]α.
(1)如图1.
①BD=CE,理由如下:
∵AD=AE,∠ADE=α,
∴∠AED=∠ADE=α,
∴∠DAE=180°-2∠ADE=180°-2α,
同理可得:∠BAC=180°-2α,
∴∠DAE=∠BAC,
∴∠DAE+∠BAE=∠BAC+∠BAE,
即:∠BAD=∠CAE.
在△ABD与△ACE中,
∵
AB=AC
∠BAD=∠CAE
AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE;
②∵△ABD≌△ACE,
∴∠BDA=∠CEA,
∵∠BMC=∠MCD+∠MDC,
∴∠BMC=∠MCD+∠CEA=∠DAE=180°-2α;
(2)如图2.
∵AD=ED,∠ADE=α,
∴∠DAE=[180°−∠ADE/2]=90°-[1/2]α,
同理可得:∠BAC=90°-[1/2]α,
∴∠DAE=∠BAC,
∴∠DAE+∠BAE=∠BAC+∠BAE,
即:∠BAD=∠CAE.
∵AB=kAC,AD=kAE,
∴AB:AC=AD:AE=k.
在△ABD与△ACE中,
∵AB:AC=AD:AE=k,∠BDA=∠CEA,
∴△ABD∽△ACE,
∴BD:CE=AB:AC=AD:AE=k,∠BDA=∠CEA,
∴BD=kCE;
∵∠BMC=∠MCD+∠MDC,
∴∠BMC=∠MCD+∠CEA=∠DAE=90°-[1/2]α.
故答案为:BD=kCE,90°-[1/2]α;
(3)如右图.
∵AD=ED,∠ADE=α,
∴∠DAE=∠AED=[180°−∠ADE/2]=90°-[1/2]α,
同理可得:∠BAC=90°-[1/2]α,
∴∠DAE=∠BAC,即∠BAD=∠CAE.
∵AB=kAC,AD=kAE,
∴AB:AC=AD:AE=k.
在△ABD与△ACE中,
∵AB:AC=AD:AE=k,∠BAD=∠CAE,
∴△ABD∽△ACE,
∴∠BDA=∠CEA,
∵∠BMC=∠MCD+∠MDC,∠MCD=∠CED+∠ADE=∠CED+α,
∴∠BMC=∠CED+α+∠CEA=∠AED+α=90°-[1/2]α+α=90°+[1/2]α.
故答案为:90°+[1/2]α.
点评:
本题考点: 相似三角形的判定与性质;全等三角形的判定与性质;作图-旋转变换.
考点点评: 本题考查了全等三角形的判定与性质,三角形的外角的性质,相似三角形的判定与性质,作图-旋转变换,综合性较强,有一定难度.由于全等是相似的特殊情况,所以做第二问可以借助第一问的思路及方法,做第三问又可以遵照第二问的做法,本题三问由浅入深,层层递进,做好第一问是关键.