已知数列an的前n项和为Sn,Sn=2-【(2/n)+1】an(n≥1)(1)求证 数列an/n是等比数列
2个回答

(1)

a1=S1=2-[(2/1)+1]a1

整理,得4a1=2 a1=1/2

n≥2时,

Sn=2-[(2/n)+1]an

Sn-1=2-[2/(n-1) +1]a(n-1)

Sn-Sn-1=an=2-[(2/n)+1]an-2+[2/(n-1) +1]a(n-1)

整理,得

[2(n+1)/n]an=[(n+1)/(n-1)]a(n-1)

2an/n=a(n-1)/(n-1)

(an/n)/[a(n-1)/(n-1)]=1/2,为定值.

a1/1=(1/2)/1=1/2

数列{an/n}是以1/2为首项,1/2为公比的等比数列.

an/n=(1/2)×(1/2)^(n-1)=1/2ⁿ

(2)

an=n/2ⁿ

2ⁿ×an=2ⁿ×n/2ⁿ=n

Tn=1+2+...+n=n(n+1)/2

1/Tn=2/[n(n+1)]=2[1/n-1/(n+1)]

An=1/T1+1/T2+1/T3+...+1/Tn

=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]

=2[1-1/(n+1)]

=2n/(n+1)

An/[2/(nan)]

=[2n/(n+1)]/[2/(n²/2ⁿ)]

=n³/[(n+1)×2ⁿ]