高等数学不定积分换元法∫[arctanx/x^2(1+x^2)]dx 用换元法怎么解
1个回答

换元法与分部法结合

令t=arctanx,则

∫[arctanx/x^2(1+x^2)]dx

=∫t/[(tant)^2×(sect)^2]×(sect)^2 dt

=∫t×(cott)^2 dt

=∫t×(csct)^2 dt-∫t dt

=-∫t d(cott)-1/2×t^2

=-t×cott+∫cottdt-1/2×t^2

=-t×cott+ln|sint|-1/2×t^2+C

=-arctanx/x+ln|x|-1/2×ln(1+x^2)-1/2×(arctanx)^2+C