(1)△AEF∽△CED (三内角分别相等)
AE/CE=AF/DC
AF=DC*AE/CE=1/3 * DC=1/3*AB
(2)-①
∵△GFB∽△DFA (三内角分别相等)
∴GB/AD=BF/AF
GB=2*AD=8,GC=8+4=12
GM=8-MB=8-X=2
∵GD^2=GC^2+DC^2=(GM+MB)^2+DC^2=144+16=160 (勾股定律)
∴GD=10
∵△GNM∽△DNA (三内角分别相等)
∴GN/ND=GM/AD
(GD-DN)/ND=GM/AB
(10-DN)/DN=2/4
10-DN=1/2DN
DN=20/3
(2)-②
∵△GFB∽△GDC (三内角分别相等)
∴GB/GC=BF/DC
GB/(GB+BC)=BF/DC=2/3
GB(GB+4)=2/3
∴GB=8
GM=8-x
∵△GNM∽△DNA (三内角分别相等)
∴GN/ND=GM/AD=(8-x)/4
作NO⊥MB
∵△GNO∽△GDC
∴GD/GN=DC/NO
(GN+ND)/GN=DC/NO
1+ ND/GN=DC/NO
1+ 4/(8-x)=4/NO
(8-x+4)/(8-x)=4/NO
NO=(32-4x)/(12-x)
△NGM面积=GM*NO/2
=(8-x)×(32-4x)/(12-x)÷2
=(4x^2-64x+8*32)/(12-x)/2
=2(x^2-12x+64)/(12-x)