已知抛物线y^2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且AF+BF=8,且
1个回答

答:

① 焦点x轴上设抛物线方程:y² = 2px判断焦点(p/2,0)点

② 设A点坐标(x1,y1),B点坐标(x2,y2)设AB斜率k线段AB垂直平分线斜率k'

则:kk' = -1所:

(y1-y2)/(x1-x2) * [(y1+y2)/2 - 0 ]/[(x1+x2)/2 - 6] = -1

(y1² - y2²) / [x1² - x2² -12(x1 - x2)] = -1

代入y1²=2px1,y2²=2px2化简:

2p/(x1 + x2 - 12) = -1

x1 + x2 = 12 - 2p ---

AF²=(x1 - p/2)² + y1² = (x1 - p/2)² + 2px1 = (x1 + p/2)²

AF = x1 + p/2

同理:

BF = x2 + p/2

AF + BF = x1 + x2 + p ---

link:

12 - 2p + p = 8

p=4

综上:

抛物线方程:

y² = 8x