∵∠AFE=∠BFD、∠AEF=∠BDF=90°,∴∠CAD=∠FBD(等角的余角相等).
∵∠CAD=∠FBD、∠ADC=∠BDF=90°,∴△ACD∽△BFD,∴CD/DF=AD/BD,
∴CD×BD=AD×DF,又AD=BC,∴CD×BD=BC×DF,
∴(CG-DG)(BG+DG)=BC×DF,而BG=CG、BC=2CG,
∴(CG-DG)(CG+DG)=2CG×DF,∴CG^2-DG^2=2CG×DF.······①
在Rt△DFG中,由勾股定理,有:DG^2=FG^2-DF^2.······②
将②代入到①中,得:CG^2-(FG^2-DF^2)=2CG×DF,
∴CG^2-2CG×DF+DF^2=FG^2,∴(CG-DF)^2=FG^2.······③
∵DF⊥CD、EF⊥CE,∴C、E、F、D共圆.
很明显,∠DCE是锐角,∴∠DFE是钝角,∴∠EFG是钝角,∴EG>FG>DF.
∵BE⊥CE、G是BC的中点,∴EG=(1/2)BC=CG,∴CG>DF,∴由③,得:
CG-DF=FG,∴DF+FG=CG=(1/2)BC.