a(n+1)=(an-1/4)/an
令a(n+1)+c=b(an+c)/an
则a(n+1)=[(b-c)an+bc]/an
b-c=1,bc=-1/4
解得b=1/2,c=-1/2
代入可得a(n+1)-1/2=1/2(an-1/2)/an
两边倒数1/[a(n+1)-1/2]=2an/(an-1/2)
1/[a(n+1)-1/2] - 1/(an-1/2)=2
令bn=1/(an-1/2)
则b(n+1)-bn=2
故bn为公差为2的等差数列
b1=1/(a1-1/2)=2
bn=b1+(n-1)*2=2n
bn=1/(an-1/2)=2n
an=(n+1)/2n,n>=1.
还有不懂的地方,请问我!