题目是这样的,求一个三重积分,被积函数为x^2+y^2,区域为
1个回答

切片法:x² + y² = [√(2z)]²

∫∫∫(S) (x² + y²) dV

= ∫(2→8) dz ∫∫Dz (x² + y²) dxdy

= ∫(2→8) dz • [∫(0→2π) dθ ∫(0→√(2z)) r³ dr]

= ∫(2→8) 2π • (1/4)[ r⁴ ] |(0→√(2z)) dz

= ∫(2→8) π/2 • 4z² dz

= 2π • (1/3)[ z³ ] |(2→8)

= (2π/3) • (512 - 8)

= 336π

S₁:{ x² + y² ≤ 2z、z = 8

S₂:{ x² + y² ≤ 2z、z = 2

∫∫∫(S) (x² + y²) dV

= ∫∫∫(S₁) (x² + y²) dV - ∫∫∫(S₂) (x² + y²) dV

= ∫(0→2π) dθ ∫(0→4) r dr ∫(r²/2→8) r² dz - ∫(0→2π) dθ ∫(0→2) r dr ∫(r²/2→2) r² dz

= 2π∫(0→4) r³ • (8 - r²/2) dr - 2π∫(0→2) r³ • (2 - r²/2) dr

= π∫(0→4) (16r³ - r⁵) dr - π∫(0→2) (4r³ - r⁵) dr

= π • [ 4r⁴ - r⁶/6 ] |(0→4) - π • [ r⁴ - r⁶/6 ] |(0→2)

= π • (1024 - 2048/3) - π • (16 - 32/3)

= 336π