解题思路:由于含有x-y的因式,因而当x=y时,代数式值为0.在代数式中,令x=y,即x3+x3+3x3+ax3=0,从而求出a=-5.再将a=-5代入x3+y3+3x2y+axy2,将整式采取割补法变形为x3-x2y+4x2y-5xy2+y3,再运用提公因式法,十字相乘法分解因式即可.
∵代数式x3+y3+3x2y+axy2含有因式x-y,
∴当x=y时,x3+y3+3x2y+axy2=0,
∴令x=y,即x3+x3+3x3+ax3=0,
则有5+a=0,解得a=-5.
将a=-5代入x3+y3+3x2y+axy2,得
x3+y3+3x2y-5xy2
=x3-x2y+4x2y-5xy2+y3
=(x-y)x2+y(x-y)(4x-y)
=(x-y)(x2+4xy-y2)
=(x−y)(x+2y+
5y)(x+2y−
5y).
故答案为:(x−y)(x+2y+
5y)(x+2y−
5y).
点评:
本题考点: 实数范围内分解因式.
考点点评: 本题考查了实数范围内分解因式.解题的关键是由代数式含有因式x-y,可令x=y时,则代数式值为0,求出a的值.本题难度大,难点在于如何割补,可以按照含有因式x-y,将整式按x的降幂排列来进行.