最佳答案:对于一点,不仅是左右连续,而是在Z上从各方向趋于一点都连续.对于f,要求u,v偏导连续,而且u,v满足C.-R.条件.
最佳答案:函数可积就是看函数在一个区间上的定积分是否存在!如果存在则称为可积!如果不存在则为不可积!如果一个函数在某区间上连续且有界那么这个函数在该区间上一定可积!这是可
最佳答案:是不同的概念,收敛是对函数列而言,而连续是对单个函数而言.
最佳答案:你问的是一元函数的情况吧,多元函数另当别论了可导可微是一回事,可导可微必连续连续必可积..可积是最弱的条件了
最佳答案:可导一定连续连续不一定可道可导,导数不一定连续导数连续,函数一定可导
最佳答案:连续型随机变量的分布函数一定连续,但密度不一定.其分布函数的连续性来自于连续型随机变量的定义:可以写成非负可积函数的变上限积分.根据微积分的知识可知连续;而关于
最佳答案:一致连续性说明不论在区间任何部分,只要自变量两个数接近一定程度,是对应的数接近一定程度的区间.因此如果一个数一致连续一定连续,反之则不行.如果你学理工科,最好搞
最佳答案:反函数的导数等于原函数的导数的倒数.除了在某几个原函数的导数为0的点以外,利用原函数的可导性就可以说明反函数可导了.
最佳答案:函数连续不一定可导,但是可导函数一定连续.分段函数就不一定可导 .画简单的图形就可以了解了 ,你画个图:y=|x|,这个函数在x=0时是不可导的.x从负数趋于0
最佳答案:函数在某点有定义就是能在这个点取值 比如Y=(X-3)/(X-8) ,因为分母为X-3 那么X就不能等于3 ,等于3了 ,分母为0 ,那么这个函数就没有意义了,
最佳答案:有极限不一定连续,但是连续一定有极限.一个函数连续必须有两个条件:一个是在此处有定义,另外一个是在此区间内要有极限.因此说函数有极限是函数连续的必要不充分条件.
最佳答案:连续就是不间断,但函数在某点连续时极限不一定存在,比如y=lxl在x等于0处的极限就不存在,在x从负无穷趋于0是极限是负1,在x从正无穷趋于0时极限是正一,这样
最佳答案:1、找到定义域或者分段函数连接点 2、判断在该点的左极限是否=右极限——等于的话就是连续 3、判断该点的函数值是否等于左右极限——等于的话就是可导
最佳答案:连续性是局部性质,一般只对单点讨论,说函数在一个集合上连续也只不过是逐点连续.一致连续性是整体性质,要对定义域上的某个子集(比如区间)来讨论,表明了整体的连续程
最佳答案:是对于多元函数来说,要证明在某一点是可微的,需要求出函数对各个未知数的偏导数.由于知道,各个偏导函数在这个点是连续的,则证明原函数在该点是可微的.证明是连续的方
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处
最佳答案:考虑函数y=sin(1/x)x^2,当 x=0时其值定义为0;则该函数在x=0处由定义可导且导数值为0,但其导函数在x=0处的极限不为0(实际上不存在).这就举