最佳答案:1)x=t,y=1+t/2把直线参数方程有参数的放在等号一侧 再用Y-1/X消除T就可以得出2y-x-2=0圆C:x^2+y^2=2y+2x(等式两边同时乘以P
最佳答案:将直线l的参数方程化为直角坐标方程,得y=-4/3(x-2),令y=0,得x=2,辑M点的坐标为(2,0),又曲线C为圆,圆C的圆心坐标为(0,1),半径r=1
最佳答案:为了是,根据P、A两点坐标,计算PA间的距离,即|PA|同理,可计算PB间距离,即|PB|(X1,Y1)与(X2,Y2)两点间距离可用勾股定理计算即 D^2=(
最佳答案:N是函数y=t-2√(t-3),t≥3的值域设x=√(t-3)≥0,x²=t-3,t=x²+3∴y=x²-2x+3=(x-1)²+2∵x≥0∴当x=1时,y取得
最佳答案:圆C的圆心坐标(0,根号2)半径r=根号2直线方程是y=1+2x (0,根号2)与直线的距离d=(根号2-1)除跟号5小于半径根号2故相交
最佳答案:首先 参数方程化为直角坐标系中的直线方程:y=1+2x圆在直角坐标系中的方程:x^2+y^2=8 (圆心为(0,0))所以计算直线到圆心距离d=1/(根号5)=
最佳答案:消去参数 t 可得直线 L 的直角坐标方程为 y=√3*(x-2) , 由和角公式得 ρ^2*[(cosθ)^2-(sinθ)^2]=1 , 因此 x^2-
最佳答案:消去参数 t 可得直线 L 的直角坐标方程为 y=√3*(x-2) ,由和角公式得 ρ^2*[(cosθ)^2-(sinθ)^2]=1 ,因此 x^2-y^2=
最佳答案:(1)∵由得:所以曲线的直角坐标方程为它是以为圆心,半径为的圆.(2)代入整理得设其两根分别为、,则
最佳答案:解题思路:直线l即x=t,t>0,曲线C:ρ=2sinθ 即x2+(y-1)2=1,由直线l和圆相切,可得 1=t-0,解得t 的值.直线l:ρcosθ=t
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
最佳答案:t=(x+1)/cos a t=y/sin a=> (x+1)/c0s a=y/ sin a => y=(sin a/cos a)x+(sin a/cos a)
最佳答案:解:(1)由ρ=2sinθ,得x 2+y 2-2y=0,即x 2+(y-) 2=5.。。。。。。。4分(2)解法一:将l的参数方程代入圆C的直角坐标方程,得即t
最佳答案:均化为普通方程ρ=2cosθ+2sinθ,ρ²=2ρcosθ+2ρsinθx²+y²=2x+2y(x-)²+(y-1)²=2圆心为C(1,1),半径为√2直线
最佳答案:解题思路:(Ⅰ)由得即5分(Ⅱ)将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|==。
最佳答案:解题思路:由得,化为直角坐标方程为,即.(Ⅱ)将的参数方程代入圆C的直角坐标方程,得.由,故可设是上述方程的两根,所以又直线过点,故结合t的几何意义得=所以的最