最佳答案:把y=Cxe^(-x)的一阶导数与二阶导数代入非齐次方程,求得C=-2.这个求导的过程一般不用完全写出来,只写代入方程后得到的等式即可
最佳答案:dsolve('D2x+0.5*Dx+9*x=2*sint','t')ans =exp(-1/4*t)*sin(1/4*143^(1/2)*t)*C2+exp(
最佳答案:特解为y=e^x(acosx+bsinx),y'=e^x((a+b)cosx+(b--a)sinx),y''=e^x(2bcosx--2asinx),代入得a=
最佳答案:这种题分为两种类型:1.不带有三角函数的.2.带有三角函数的.
最佳答案:特征方程r^2-1=0r=±1齐次通解y=C1e^x+C2e^(-x)所以非齐次通解y=C1e^x+C2e^(-x)+1/x
最佳答案:λ=2,2不是特征方程的根
最佳答案:首先,我不知道这个方程是几阶的.想必应该是二阶的吧!将三个特解两两相减就可以得到该线性齐次微分方程的通解.然后,取其中的两个,在每一个之前乘上一个任意常数,相加
最佳答案:若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则非齐次方程:y" - p(x)*y' - q(x)*y =
最佳答案:可设特解Y=Ax*e^x+Bx代入原微分方程可得:A=1,B=-4所以特解Y=Ax*e^x+Bx
最佳答案:这个要具体方程;给你一个思路,先观察,找二阶齐次微分方程的通解,在加上一个特解就ok;
最佳答案:y''+y=x^2先求齐次通解,就是求我用y''+y=0来表示了.特征方程,r方+1=0,r=0±i,齐次通解y=C1e^0xcosx+C2e^0xsinx=C
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
最佳答案:特解不止一个,任何一个满足条件的解都是特解.你的结果和陈文灯书上的结果应该都对,对本题若p(x)是一个解,则p(x)+c显然也是一个解,因为c'''-2c''-
最佳答案:用微分算子主要还是要熟悉算子的那些个性质,至于用,就放心大胆用,不会出圈的
最佳答案:y4=y2-y1=e^-x是其次的特解根据微分方程解的结构定理通解为:y=c1y3+c2y4+y1=c1x+c2(e^-x)+3+x^2
最佳答案:先用特征方程法求解其奇次方程线性微分方程,得到通解x1,x2,然后看非奇次项的结构(具体给出的才能设),对于一般的非奇次项你可以用常数变异法求解,令解为x=c1
最佳答案:把你假设出的特解带入原方程,同类项对比系数,就能得到解待定系数的一次方程组,这样就能解得待定系数了.举个例子看看:y''+2y'+3y=4x+1这个方程的特解应
最佳答案:k的取值由λ决定.如果λ不是齐次方程的特征方程的根,k=0;如果λ是齐次方程的特征方程的单根,k=1;如果λ是齐次方程的特征方程的重根,k=2.当k的值确定了之