最佳答案:已知x1={104020 104040 102900 103310 95855 98998 104174 99824 97708 100133 96785}x2
最佳答案:对x,y偏导数均连续
最佳答案:一阶偏导连续,可微,多元函数连续均是重极限存在的充分不必要条件.
最佳答案:跟二项式展开定理很像的,给你看看最简单的二元全微分的d2f(x,y)=d2f/dx2 (dx2 )+2*d2f/dxdy(dxdy)+ d2f/dy2 (dy2
最佳答案:呵呵 多元函数可导啊~ 这么说吧 我们举一个最简单的例子 f(x,y)=X+Y 这个函数对于 x 和 y 的偏导(函)数 都是 1 对吧? 但是对于 x 的偏导
最佳答案:多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在
最佳答案:函数f(x1,x2,...,xn)在点x0沿方向u=(u1,u2,...,un)的方向导数为af/ax1*u1+af/ax2*u2+...+af/axn*un=
最佳答案:形象的说这个充要条件就是:这个二元函数要连续且光滑,你想象一个三维坐标系中,一个光滑的平面,就像水面一样,没有折痕,这样的函数二阶偏导就相等不相等的时候一般就是
最佳答案:各个分量的偏导数为0,这是一个必要条件.充分条件是这个多元函数的二阶偏导数的行列式为正定或负定的.如果这个多元函数的二阶偏导数的行列式是半正定的则需要进一步判断