最佳答案:正文:这个是反函数的连续性定理,一般的非数学专业应该不会要求这个定理证明吧!定理完整描述:设y=f(x)在a
最佳答案:函数的定义是对定义域内任意一个x,按照某种对应法则,都有唯一的y与它对应.如y1=f(x1),对x1有唯一的y1与它对应,单调函数的x与y是一一对应的关系,所以
最佳答案:确实第二位的回答是正确的.不过您的问题中提到要从连续性、单调性说明,所以第一位回答了反函数存在的充分条件.您提到了非单调函数可以有反函数,我补充一点:处处不连续
最佳答案:我是这么理解的:单调,才能保证反函数中不会出现一个x对应多个y的不符合函数定义的情况出现;连续,或者分段光滑,才能保证该反函数有导数。