知识问答
最佳答案:设A是一个n 阶可逆矩阵,E是n阶单位矩阵,X是一个n乘n的未知矩阵,解矩阵方程AX=E就得到A的逆矩阵.这相当于解n个方程组,每一个方程组都是n元线性方程组.
最佳答案:列矩阵(A,b),进行行变换,变成(E,t)的形式,则t=A逆b1 -1 -1 22 -1 -3 13 2 -5 0第1,2行分别乘-2,-3加到第2,3行1
最佳答案:知识点:与齐次线性方程组的基础解系等价且含相同向量个数的向量组仍是方程组的基础解系证明: 因为B可逆, 所以BA的行向量组与A的行向量组等价且 BA 与 A 的
最佳答案:选3可逆 所以|A|不等于0 其次方程组只有唯一解0,非齐次只有唯一解 2是万能公式 一定对