最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果
最佳答案:二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果
最佳答案:二元函数 f(x,y) 具有二阶连续偏导数指的是偏导数fx(x,y),fy(x,y)关于 (x,y) 是连续的.
最佳答案:你是不是认为函数f(x,y)只在要讨论的区域D上才有定义啊?不是这样的,例如函数f(x,y)=xy,我们取区域D为圆x^2+y^2≤1,这是一个闭区域,但是f(
最佳答案:二元函数的几何图形是一个曲面,在某点可微的几何含义就是通过该点沿任一方向的L的方向导数存在.也可理解为曲面上该点沿任意方向可导.再形象点,就是