知识问答
最佳答案:课本上都有吧.右边是e^ax P(x)sinx特解是e^ax [Q(x)sinx+R(x)cosx]等等
最佳答案:设y*是n阶常系数非齐次微分方程的一个特解,y1,y2,...,yn是对应的齐次方程的n个线性无关的特解,则.齐次方程的通解为Y=C1y1+C2y2+...+C
最佳答案:二阶线性齐次方程的一般形式为:y''+a1y'+a2y=0,其中a1,a2为实常数. 我们知道指数函数e^(ax)求导后仍为指数函数.利用这个性质,可适当的选择
最佳答案:你的见解是正确的.可以用原来的特解+齐次通解.当然也可以用新的特解+齐次通解,二者等价.如 (I)中,当 k1=1,k2=-1/2,时,特解就是原来的特解了,(
最佳答案:特征方程r^2-1=0r=±1齐次通解y=C1e^x+C2e^(-x)所以非齐次通解y=C1e^x+C2e^(-x)+1/x
最佳答案:大概有两个原因:一是非齐次线性方程组不一定有解。你能找到一个特解,那才能讨论通解。若不然,你首先考虑的不是通解的问题,而是有没有解的问题。二是非齐次线性方程组的
最佳答案:首先,我不知道这个方程是几阶的.想必应该是二阶的吧!将三个特解两两相减就可以得到该线性齐次微分方程的通解.然后,取其中的两个,在每一个之前乘上一个任意常数,相加
最佳答案:y''+y=x^2先求齐次通解,就是求我用y''+y=0来表示了.特征方程,r方+1=0,r=0±i,齐次通解y=C1e^0xcosx+C2e^0xsinx=C
最佳答案:若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则非齐次方程:y" - p(x)*y' - q(x)*y =
最佳答案:是二阶的微分方程吗?应该先求出他的齐次方程的解y齐=C1(y2(x)-y1(x))+C2(y3(x)-y2(x))所以原方程的通解为y=y1(x)+y齐=C1(
最佳答案:由于是二阶线性齐次方程,因此,他的齐次解应该有两个,且y2-y1=x-1和y3-y1=x^3 -1不相关,因此,可以作为基础解系.方程的通解为Y=C1[x-1]
最佳答案:方程呢?特解加齐次通解等于非齐次通解,我只知道这个。。。对于二阶齐次线性方程通解的结构是c1y1+c2y2 其中y1 y2为线性无关的两解。Wronsky行列
最佳答案:解 求特征方程r^2+P(x)r+Q(x)=0解出两个特征根r1,r2若r1≠r2且r1,r2为实数,则y=C1*e^(r1*x)+C2*e^(r2*x)若r1