最佳答案:aX^2+bX+c=0对称轴为:-b/2a例如:2x^2+4x+8=0对称轴为,-b/2a=-4/(2*2)=-1
最佳答案:初中还是高中?高中的:一元二次方程的对称轴用来看增减区间,开口向上的话,在负的2a分之b到正无穷为增,反之为减,开口向下,结论相反 而△是判断方程有没有实根,有
最佳答案:对称轴为x=2则有横坐标为2,又有y=0.所以(2,0)
最佳答案:解题思路:根据连根之和公式可以求出对称轴公式.∵一元二次方程ax2+bx+c=0的两个根为-3和-1,∴x1+x2=-[b/a]=-4.∴对称轴为直线x=-[b
最佳答案:已知:关于x的一元二次方程ax²+bx+c=-3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为__________
最佳答案:x=-1和-3ax²+bx+c=0而x轴就是y=0所以图像与x轴交点坐标为(-1,0),(-3,0)
最佳答案:y=x²+bx的对称轴为x=-b/2=1,得:b=-2即y=x²-2x而x²-2x-t=0在 (-1, 4)区间有解即t=x²-2x=(x-1)²-1=y在(
最佳答案:解析:∵方程ax²+bx+c=-3的一个根为x=-2∴ax²+bx+c+3=0∵二次函数y=ax2+bx+c的对称轴是直线x=2∴-b/(2a)=2==>b=-
最佳答案:4a-2b+c=-3-b/2a=2∴b=-4a c=-3-12a∴(4ac-b²)/4a=-3-16a∴顶点(2,-3-16a)
最佳答案:如果一元二次方程ax^2+bx+c的两个根是-3和-1,则二次函数y=ax^2+bx+c的图像的对称轴是直线-----x=(-3+1)/2=-1
最佳答案:记f(x)=ax^2+bx+c则f(x)-3=0的一个根为x1=2,即4a+2b+c-3=2,得4a+2b+c=5而f(x)的对称轴为x=2,即-b/(2a)=
最佳答案:将x=2代入方程ax²+bx+c=3得 4a+2b+c=3抛物线y=ax²+bx+c的对称轴是直线x=2x=-b/2a=2===》b=-4a将b=-4a代入 4
最佳答案:解题思路:根据二次函数图象上点的纵坐标相等时,横坐标关于对称轴对称,可得答案.二次函数y=-x2+bx+c的部分图象如图所示,对称轴为直线x=1,关于x的一元二