最佳答案:方程组的解=一个特解+零解特解就是方程的一个解 也就是使Ax=b的解 如果x是n维向量而r(A)=n,这时x是唯一的其他时候因为零解有无穷个特解的答案形式也是无
最佳答案:若X1=X3+2X4+7X2=2X1+3X3=X3X4=X4在等式右边X1,X2,X3,X4依次取0得(7 3 0 0)这就是特解
最佳答案:列增广矩阵,则最后一行加上前面四行为[0 0 0 0 0 a1+a2+a3+a4+a5];要使方程有解则使曾广矩阵的秩和原矩阵的秩一样都等于4,则ai的和为0;
最佳答案:解齐次线性方程组一般都是对系数矩阵进行初等行变换,之后求得通解解非齐次线性方程组,常用的有两种解法,一种是在未知数个数和方程个数相等的时候,使用克拉默法则,不过
最佳答案:特解就是找到一个该方程的一个解,非齐次的解等于齐次的通解加上特解,这个特解就是我们说的非齐次线性方程组的特解,就是说这个解带入非齐次方程成立,
最佳答案:列向量组a1,a2,...an与向量组a1,a2,...an,b等价,则b一定可由向量组a1,a2,...an线性表出,于是r(a1,a2,...an)=r(a
最佳答案:矩阵满秩是这个矩阵线性无关的充要条件,但是矩阵线性相关 只能推出 这个矩阵不是满秩矩阵,矩阵的行列式为零.(以上只限于方阵)当行数大于列时,秩必然小于等于列数.
最佳答案:这涉及(1) 用初等行变换化为行最简形(2) 确定r(A)以及自由未知量(3) 自由未知量全取0得特解(4)不看最后一列,自由未知量分别取 1,0,...0;
最佳答案:不是特指也可以是非齐性次方程组.非齐次方程组也成立,不过应该考虑增广矩阵.
最佳答案:对于非齐次线性方程组:b=Ax,b≠0若x1,x2为其两个不等解则,x1-x2为0=Ax的解因为:b=Ax1b=Ax2相减:根据线性性质,有0=Ax1-Ax2=
最佳答案:Ax = 0 的基础解系含 2 个线性无关的解向量,则 r(A) = n-2 = 4-2 = 2A 初等变换为[1 2 1 2][0 1 t t][0 t-2
最佳答案:向量就是一维矩阵,列向量就是将矩阵的任意一列看做向量形成的矩阵比如A=[A1,A2,A3,A4...]A1~An就是大小为m行1列的列向量在这句话里,线性组合指
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
最佳答案:这题算是高数题里比较简单的,楼主最好看看书自己解答哦!别人告诉了你答案,但是你自己不懂如何解答的话考试肯定也是不会写的
最佳答案:题目出错了,t一定要等于s,解的维度才能相等,才谈得上公共解答案中这句话一点道理也没有,举个反例俩矩阵 1 0 1 1
最佳答案:矩阵秩的性质:r(A)≤r(A,B)≤r(A)+r(B),r(B)≤r(A,B)≤r(A)+r(B).所以方程组Ax=b的矩阵A与(A,b)的秩的关系是:r(A