最佳答案:e^[-∫(-1/x)dx]=e^[∫1/xdx]=e^lnx=xe^[∫(-1/x)dx]=e^-lnx=1/x所以∫[(1/lnx)e^∫(-1/x)dx]
最佳答案:不可以,这里y"+P(x)y'+Q(x)y=0是齐次方程而题目说的是非齐次方程.
最佳答案:特征方程r^2-1=0r=±1齐次通解y=C1e^x+C2e^(-x)所以非齐次通解y=C1e^x+C2e^(-x)+1/x
最佳答案:1 p=1 q=e^-x ∫pdx=x1的通解为e^-x(∫e^-x·e^xdx+c)=(x+c)·e^-x2 p=cosx q=e^-sinx ∫pdx=si
最佳答案:这个要具体方程;给你一个思路,先观察,找二阶齐次微分方程的通解,在加上一个特解就ok;
最佳答案:‍  ‍可知其对应的特征方程的解为复根±2i.则特征方程是r²+4=0则该微分方程对应的齐次微分方程是y''+4y=0令这个非齐次微分方程是y''+4y=φ(x
最佳答案:很简单,但答案不唯一,首先你要知道,非齐次的通解=齐次通解+非其次特解,齐次通解为已知的任何两个非其次特解想减,(系数C我就不用多解释了,你当然要带上)C1(X
最佳答案:y4=y2-y1=e^-x是其次的特解根据微分方程解的结构定理通解为:y=c1y3+c2y4+y1=c1x+c2(e^-x)+3+x^2
最佳答案:a=b=0.5.详细过程解说如下:设方程为cy'+dy=f(x),c不为0,当y1,y2满足方程时,c(ay1+by2)'+d(ay1+by2)=a(cy1'+
最佳答案:二阶非齐次线性方程的任意两个解的查是对应的齐次线性方程的解,所以y1-y2=e^x-e^(-x),y1-y3=e^x-x^2是齐次线性方程的解,且线性无关,所以
最佳答案:特征根为r=1, -1, 即是y1,y2项,而特解为y3项因此通解为y=C1e^x+C2e^(-x)+x^2
最佳答案:证:反证法!要证y1,y2之比不为常数,即证明y1,y2线性无关!假设y1,y2线性相关,设y2=ky1,因为y1,y2是二阶非齐次线性方程的特解,故它们都不是
最佳答案:这个不能那样算!如果要看成q(x),那么它就要含x变量,不能直接把它当做定值(0)看待,其实它是用分离变量法来算:dy/y=-4x*dx 两边积分 如果没看错你
最佳答案:λ对应的就是特征方程根的实数部分,不用看虚数部分的数字,比如这里是1+(-)2i,实数部分就是1,和λ相同,说明是单根
最佳答案:解题思路:首先,由非齐次的解之差为齐次的解,得到齐次的两个线性无关的解;然后,得到特征方程;再根据特解求出非齐次的f(x);最后,得到非齐次微分方程.由题意,有
最佳答案:解题思路:由已知的3个解,可以确定二阶常系数非齐次线性微分方程的一个特解以及所对应的齐次方程的2个线性无关的解,从而利用线性微分方程解的结构写出方程的通解形式.
最佳答案:通解有很多种表示形式,一种是y1+C1(y2-y1)+C2(y3-y1),前面的y1也可以换作y2,y3,后面的y2-y1与y3-y1可以从y2-y1,y3-y