知识问答
最佳答案:1、对应的齐次线性方程的特征方程是r^2-3r+2=0,根是1.2.所以齐次线性方程的通解是y=C1*e^x+C2*e^(2x).因为λ=0不是特征方程的根,所
最佳答案:方程:d^2(y)/d(x^2)+a*dy/dx+b*y=0解方程:z^2+a*z+b=0得出z1,z2若两者是重根,则得到基本解组,z1*exp(z1*t),
最佳答案:同济第六版《高等数学》上册p343-344.有很清晰的推导过程.简单说就是把f(x)变成负数的形式后,是e的指数形式,然后设特解是e的指数形式,最后还原到实数域
最佳答案:不用特别的去分,只要把握住,右侧函数是多项式乘指数的时候,看指数x的系数(比如说是t)是不是特征根就可以了,应该知道t不是特征根,设的时候k=0,t是特征根中的
最佳答案:令y' = v,y'' = v'y'' - 1/x · y' = xe^xv' - v/x = xe^x,e^∫ - 1/x dx = e^- ln|x| =
最佳答案:你这个题目应该是e的2λx的次方吧,如果像你这样说的话那答案就是[(C1+C2x)e^-1]+e^2λ我估计你打错了,少了一个x这个采用微分算子法比较方便y"+
最佳答案:新年好!Happy Chinese New Year !楼主的问题是:二阶常系数非齐次线性微分方程的题目怎么解?答:1、如楼上网友所说,确确实实,大学教材有。
最佳答案:分为齐次解和特解y''-3y'+2y = 0特征方程:t^2 - 3t + 2 = 0==> t = 1 or 2==> y = c1'e^x + c2'e^(
最佳答案:复根的意思就是说当你解微分方程的特征方程时,不能求出实数解,也就是说特征方程的判别式△是小于零的,这时方程没有实根,有复根.复数是建立在i的平方等于 -1的基础
最佳答案:特征方程为t^2-4t+3=0(t-1)(t-3)=0t=1,3因此齐次方程通解为c1e^x+c2e^3x设特解为y*=ax+b,代入原方程得:-4a+3ax+
最佳答案:∵齐次方程y"-3y'+2y=0的特征方程是r^2-3r+2=0,则r1=1,r2=2∴此齐次方程的通解是y=C1e^x+C2e^(2x) (C1,C2是常数)
最佳答案:设y*是n阶常系数非齐次微分方程的一个特解,y1,y2,...,yn是对应的齐次方程的n个线性无关的特解,则.齐次方程的通解为Y=C1y1+C2y2+...+C