最佳答案:是一样的,如果函数的二阶导数存在那么它的一阶导数存在且连续进而得出,函数本身连续根据可导的定义判断,二阶导数是连续的
最佳答案:跟二项式展开定理很像的,给你看看最简单的二元全微分的d2f(x,y)=d2f/dx2 (dx2 )+2*d2f/dxdy(dxdy)+ d2f/dy2 (dy2
最佳答案:形象的说这个充要条件就是:这个二元函数要连续且光滑,你想象一个三维坐标系中,一个光滑的平面,就像水面一样,没有折痕,这样的函数二阶偏导就相等不相等的时候一般就是
最佳答案:函数导数的导数叫二阶导数"拐点"是二阶导数从正到负或从负到正的转折点,"拐点"的二阶导数为零.
最佳答案:该点曲率的大小”;和高中有点衔接的是“该点在曲线上移动时切线的斜率变化的剧烈程度”;最通俗的说法是“曲线‘变弯’的快慢n阶导数的几何意义就是(n-1)阶导数的斜
最佳答案:一样的啊,如果积分的上下限是一个数值,那么答案就是一个数了,如果上下限是未知数,那么算出不定积分之后,同样代进去得到的是一个代数式,这有什么问题?这相当于同样的
最佳答案:求二阶偏导就是在一阶偏导的基础上在对变量求一次导呀.第一题,把z看成z=f(x,y),利用复合函数求导法则等式两边对x求偏导,得1+ðz/ðx-(yz+xyðz