最佳答案:|x2-x1|=sqr(derta)/|a|sqr是根号的意思,这是化简的结果,也可用违达定理:|x2-x1|=sqr( (x1+x2)^2-4x1*x2 )^
最佳答案:对于二次函数y=ax^2+bx+c(a≠0)x1x2=√△/|a|即绝对值a分之根号(b^2-4ac)
最佳答案:若将此二次函数的图像向下平移3个单位,则它与x轴仅有一个交点,则此函数顶点的纵坐标为3设它的对称轴为x=h,与x轴的两交点分别为h+3,h-3设y=a(x-h+
最佳答案:∵f(x)=sin(wx+Ф)(w>0,0≤Ф≤π)为偶函数∴f(-x)=-f(x)∴sin(-wx+Φ)=sin(wx+Φ)∴-sinwxcosΦ+coswx
最佳答案:已知二次函数图像的顶点坐标是(-1,-3),且图像与x轴的两个交点间的距离等于4,由抛物线的对称性,可知其与X轴的两个交点是(-3, 0)、(1, 0)设其解析
最佳答案:因为某次二次函数图像的顶点为A(2,-6),它与X轴两个焦点之间的距离为8 ,所以两个交点为 (0,6) (0,-2)再把三点带入即可
最佳答案:因为顶点坐标为(2,-9) 所以该抛物线的对称轴为X=2的直线 所以该抛物线与X轴的两个交点分别为(5,0)(-1,0) 设该抛物线的解析式为y=ax2+bx+
最佳答案:二次函数具有如下形式y=a(x-2)^2-6x轴的两个交点解方程(x-2)^2=6/ax-2=+-(6/a)^(1/2)x1=2+(6/a)^(1/2),x2=
最佳答案:由顶点式可设为:y=a(x+1)²+4=ax²+2ax+a+4,两交点间距离为√Δ/|a|=4,解得a=-1,代入即可
最佳答案:(1)由对称轴为x=2,最小值为-9得:y=a(x-2)^2-9=ax^2-4ax+4a^2-9 a>0由对称轴为x=2,两交点距离为6得:y=a(x-5)(x
最佳答案:令y=0x²+mx+m-2=0有判别式Δ=m²-4(m-2)=(m-2)²+4>0所以恒有2个根交点距离=x₁-x₂=√((x₁+x₂)²-4x₁x₂)=√(m