知识问答
最佳答案:对于非其次线性方程组AX=b无解 r(A)≠r(A,b)有唯一解 r(A)=r(A,b)=n有无穷多解 r(A)=r(A,b)
最佳答案:参考这个:λ取何值时非齐次线性方程组有唯一解,无解,有无穷解λX1+X2+X3=1X1+λX2+X3=λX1+X2+λX3=λ^2增广矩阵为λ 1 1 11 λ
最佳答案:非齐次线性方程组 AX=b 有解的充分必要条件是 r(A)=r(A,b)有唯一解的充分必要条件是 r(A)=r(A,b)=n齐次线性方程组 AX=0 只有零解的
最佳答案:系数行列式 =λ+3 1 2λ λ-1 13(λ+1) λ λ+3= λ^2(λ-1).所以当λ≠0且λ≠1时,方程组有唯一解.当λ=0时,增广矩阵 =3 1
最佳答案:这是线性代数的基本定理,用一些线性空间的语言比较容易说清楚什么是“一般情况”.所谓的“一般情况”是指方程组的系数矩阵满秩,此时你说的三条都成立.至于非线性方程组
最佳答案:这个问题可以这样理解系数矩阵的秩小于增广矩阵的秩时 就是给出更多的限制条件,最后使满足条件的解变成了无解.反之就是限制条件不多,满足条件的解就由越多 当他们相等
最佳答案:(1) 如果方程的个数与末知量的个数相同的时候,你可以先通过求系数行列式不等于零时,原非线性方程组有唯一解这种情形的λ.再取λ使系数行列式等于零时,用增广矩阵来