最佳答案:函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值若某函数在某一点导数存在,则称其在这一点可导,否
最佳答案:可导必连续,可导和可微是等价的,而连续不一定可微(可导).在闭区间上,连续必可积,可积不一定连续.
最佳答案:连续函数的变限积分可导,由此推导出 N-L 公式.
最佳答案:可微与可导等价可导(可微)可以推出连续,连续可以推出可积!
最佳答案:连续函数必可积,但注意一个函数不连续,但它的有限个不连续点为第一类间断点,则它也是可积的.因此说可积函数不一定连续.不知你明白没?
最佳答案:基本初等函数在它们的定义域内都是连续的.由基本初等函数经过有限次的四则运算和有限次的函数复合所构成并可用一个解析式表示的函数,称为初等函数.一切初等函数在其定义
最佳答案:f(x)是[a,b]上的连续函数,所以可以设m
最佳答案:可导必连续,连续不一定可导,所以可导函数与连续函数的积函数一定是连续函数,但是不一定可导.例如:f(x)=1,可导;g(x)=|x|在x=0处连续但不可导,而f
最佳答案:可以利用可积(实)函数必有界和积分中值定理来证明,比较简单.
最佳答案:在区间[a,b]上原函数的导数是被积函数,原函数导数存在,故在区间[a,b]上可积函数的积分上限函数连续
最佳答案:请注意相关定理,仔细阅读,如果果真如你所讲可积函数存在第一类间断点,那么它的变上限积分求导以后的导函数就是这个函数本身对吧?达布定理已经明确指出,导函数是不可能
最佳答案:大二上学期,数学分析里的
最佳答案:对于一元函数来说,可微和可导等价对于多元函数来说,可微是可导的充分不必要条件,只有当各个偏导数都连续时才可微,无论对于任何函数来说,可微可导都能推出连续.对于R
最佳答案:可积函数不一定连续,连续函数一定可积.你说“如果不不连续的话,那不就在求面积的过程中出现断点了么,那面积不就不完整了么”,这个仅仅是现象,积分的本来含义是积分和
最佳答案:以下都是针对一元函数的1、可导等价于可微,2、可导可以推出连续但连续不一定可导.3、连续点函数一定有极限但函数有极限不一定在该点连续.4、函数可积条件比较复杂些
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处
最佳答案:积分是求导的反问题.求f(x)的原函数,就是说哪个函数求导会等于f(x).这个原函数都可导了,当然是连续的.
最佳答案:例子见附件奇函数在对称区间上的积分肯定是0.偶函数在对称区间[-a,a]上的积分等于区间[0,a]上的积分的2倍.
最佳答案:首先y=tanx在(0,π/2)不可积,这里的积分是一种瑕积分,其中x=π/2是瑕点;其次,黎曼可积函数的确是有界函数;再次,在一个区间上连续的函数不一定可积.