最佳答案:解题思路:讨论系数矩阵与增广矩阵的秩的关系,即可求解.齐次线性方程组Am×nx=0中m<n,则有R(A)≤m<n,所以,齐次线性方程组Am×nx=0必有非零解,
最佳答案:解题思路:直接根据齐次线性方程组Ax=0基础解系所含线性无关的解向量个数等于未知数的个数与系数矩阵的秩之差,得到答案.由A为m×n矩阵,知Ax=0的未知数的个数
最佳答案:矩阵的秩不超过其行数与列数
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
最佳答案:解题思路:直接根据齐次线性方程组解的相关定理,直接得出.由于齐次线性方程组AX=0,其中A是n阶矩阵,r(A)=r<n∴将A施行初等行变换,化成行最简形矩阵,其
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
最佳答案:解题思路:充分运用“r(A)=r(A b)=n时,Ax=b有唯一解”和“r(A)=r(A b)<n时,Ax=b有无穷多解”,以及““r(A)<r(A b)时,A
最佳答案:矩阵之间的等价关系具有以下性质1 反身性 A~A2 对称性 若A~B,则B~B3 传递性 若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条
最佳答案:显然(1,1,.,1)^T是AX=0的非零解,把r(A)=n-1代入公式解向量个数=未知量个数-系数矩阵的秩=n-(n-1)=1所以方程只有一个解向量,所以通解
最佳答案:证:因为 |A|=0,所以 r(A)=n-1.故 r(A) = n-1.所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.所以AX=0的任一
最佳答案:A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1.明白了吗?
最佳答案:x=c(10)T是什么?系数阵为(01) 这是两个元素的矩阵还是分块矩阵……一头雾水.
最佳答案:提问意义不明 Aij 怎么了 什么叫所含向两个数我的猜测:Aij不等于0 那么(Ai1,Ai2,..,Ain) 为 Ax=0 的一个非零解
最佳答案:知识点: 齐次线性方程组AX=0的基础解系含 n-R(A) 个解向量1. 由已知, AX=0 的基础解系 可由BX=0 的基础解系线性表示所以 n-R(A) =
最佳答案:因为AB=0,所以r(A)+r(B)≤n,又因为B不为非零矩阵,所以r(B)≥1,所以r(A)≤n-1,当r(A)比n-1还小的话,此时意外着n-1阶子式都等于