知识问答
最佳答案:定理中有解的充分必要条件是r(A,b)=r(A)。因为r(A)=m=A的行数,而(A,b)只有m行,秩不可能大于m,所以r(A,b)=m=r(A),从而方程组A
最佳答案:因为 r(A)=3所以 Ax=0 的基础解系含 4-3=1 的解向量故由已知 (a2+a3)-2a1 = (1,0,-1,-2)^T 是Ax=0的基础解系.所以
最佳答案:选BA: 当m>n时 存在 "增广矩阵A的秩 > A的秩 " 的可能 使得 AX不等于b 即:方程组不一定有解C: 当m=n时 存在 r < n 即:AX=b存
最佳答案:增广矩阵 =1 -1 0 0 0 A10 1 -1 0 0 A20 0 1 -1 0 A30 0 0 1 -1 A4-1 0 0 0 1 A5所有行加到第5行1
最佳答案:n=4,R(A)=1.故AX=0的解空间是:n-R(A)=4-1=3 维的.故基础解系中含有3个线性无关的解向量.
最佳答案:齐次线性方程组要有解,则行列式A的值要为零,才可能有非零解(克拉默法则).可以是含有a,b的那个向量与其他向量成比例,这样才会使这几个向量所并成的A的行列式的值
最佳答案:因为 AX=B有解,所以 r(A)=r(A,B)所以此时AX=B 有唯一解r(A)=nAX=0 只有零解x≠0时 Ax ≠ 0x≠0时 (Ax)^T(Ax) >
最佳答案:方程有解但不唯一就说明系数矩阵A的行列式等于0啊,根据这个条件求出a就是了
最佳答案:对的.设方程组为AX=b, A=(a1,a2,...,am)必要性.若 |A|≠0, 则 r(A)=m所以a1,a2,...,am线性无关而任意m+1个m维向量
最佳答案:设 α 为W中任一向量则 A'α=0则 α 与 A' 的行向量正交即 α 与 A 的列向量正交即知 W 是由与A的列向量正交的向量构成的b与W正交b是A的列向量