知识问答
最佳答案:如果f(x)在开区间(a,b)上的每一点都可导,那么称f(x)在(a,b)上可导.如果另外还满足f(x)在a点右可导,在b点左可导,那么称f(x)在闭区间[a,
最佳答案:初等函数都是可导的,我告诉你怎么判断一个函数是不是可导的,首先要连续,一个函数要是不连续, 定义域内肯定不可导,还有就是看又没有什么特别点,这个点的左边求导如果
最佳答案:可导不一定连续 但连续一定可导 在分段点(如分段函数)左导数不一定等于右倒数,两者不等说明整个函数在该点不可导 但并不表明该点在某区间内不可导 熟悉定理在开区间
最佳答案:导函数细分有左可导和右可导,当且仅当函数在点左右都可导时,称该函数在此点可导,如果对于区间中的任意点都左右可导,称为在这个区间可导.如果取闭区间的两端点的话,则
最佳答案:楼上几位说的都存在不同程度的问题.楼上说的在概念上有问题,例子也给举错了,y = |x| 在 (-1,0]上定义时,在x = 0处的左导数是存在的,就等于-1,
最佳答案:(1)初等函数在其定义区间内必可导,未必是正确的.如函数f(x) = |x| = √(x^2)是定义在 R 上的初等函数,但其在 x = 0 不可导.(2)若曲
最佳答案:(1)由 F’(x)=[e^x* f(x)]'=e^x*[ f(x)+f(x)']1,得x*f(x)在(0,+∞)上递减,在0
最佳答案:xf(x)-4∫(1,x)f(t)dx=x^3-3,令x=1得:f(1)=-2两边对x求导得:xf‘(x)+f(x)-4f(x)=3x^2或:f‘(x)-3f(
最佳答案:有定义未必可导,你要自己用导数定义式来求端点处的导数是否存在,如分段函数f(x)=-x,x=0
最佳答案:题目有问题比如 f(x) = x ,a =1,b = 2 ,则 n>=2时,就找不到满足题意的实数ξ∈(a,b),使得f(ξ)=f'(ξ)(b-ξ)/n成立.少