椭圆相关证明椭圆中任意一点M到右焦点的距离比M到右准线的距离为什么是a/c?
1个回答

设:x^2/a^2+y^2/b^2=1

==>y^2=a^2-c^2-x^2+c^2x^2/a^2

M(x,y),右焦点F2(c,0),右准线:x=a^2/c

|MF2|^2=(x-c)^2+y^2

=x^2-2cx+c^2+a^2-c^2-x^2+c^2x^2/a^2

=a^2-2cx+c^2x^2/a^2

=c^2/a^2[a^4/c^2-2a^2x/c+x^2]

=c^2/a^2(a^2/c-x)^2

M到右准线的距离d^2=(a^2/c-x)^2

|MF2|^2/d^2 =c^2/a^2(a^2/c-x)^2/(a^2/c-x)^2

=c^2/a^2

==>|MF2|/d=c/a

椭圆中任意一点M到右焦点的距离比M到右准线的距离是c/a

修改回答