[an²-a(n-1)²]/[a(n-1)²]=[a(n+1)²-an²]/[a(n+1)²]
an²/a(n-1)² -1=1 -an²/a(n+1)²
an²/a(n-1)²+an²/a(n+1)²=2
1/a(n+1)²+1/a(n-1)²=2/an²
数列{1/an²}是等差数列.
1/a2²-1/a1²=1/1²-1/2²=1-1/4=3/4
1/a1²=1/2²=1/4
数列{1/an²}是以1/4为首项,3/4为公差的等差数列.
1/a6²=1/4 +(3/4)(6-1)=4
an>0 a6>0
1/a6=1/2
a6=2