如图,在矩形ABCD中,已知AD=10,AB=8,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,求CE的长
2个回答

解题思路:先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC-BF=4,设CE=x,则DE=EF=8-x,然后在Rt△ECF中根据勾股定理得到x2+42=(8-x)2,再解方程即可得到CE的长.

∵四边形ABCD为矩形,

∴AD=BC=10,AB=CD=8,

∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,

∴AF=AD=10,EF=DE,

在Rt△ABF中,∵BF=

AF2−AB2=6,

∴CF=BC-BF=10-6=4,

设CE=x,则DE=EF=8-x

在Rt△ECF中,∵CE2+FC2=EF2

∴x2+42=(8-x)2,解得x=3,

即CE=3.

点评:

本题考点: 翻折变换(折叠问题);矩形的性质.

考点点评: 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.