曲线积分计算∮Γ(x^2+y^2+z^2)dL,其中Γ为曲线x^2+y^2+z^2=4,x+y+z=0的交线
1个回答

直接代入方程:

∮Γ (x^2 + y^2 + z^2) ds

= ∮Γ 4 ds

= 4 * 2π(2)

= 16π

或将方程参数化然后计算:

{ x^2 + y^2 + z^2 = 4

{ x + y + z = 0

将z = - x - y代入x^2 + y^2 + z^2 = 4中

==>x^2 + y^2 + xy = 2

(x + y/2)^2 + (√3y/2)^2 = 2

{ x + y/2 = √2cost

{ √3y/2 = 2sint

==>

{ x = √2cost - (√6/3)sint、dx = [- √2sint - (√6/3)cost] dt

{ y = (2√6/3)sint、dy = (2√6/3)cost dt

{ z = - √2cost - (√6/3)sint、dz = [√2sint - (√6/3)cost] dt

0 ≤ t ≤ 2π

ds = √[(dx)^2 + (dy)^2 + (dz)^2] dt = √4 dt = 2 dt

∮Γ (x^2 + y^2 + z^2) ds

= ∫(0→2π) {[√2cost - (√6/3)sint]^2 + [(2√6/3)sint]^2 + [- √2cost - (√6/3)sint]^2} * 2 dt

= ∫(0→2π) 4 * 2 dt

= 8 * 2π

= 16π