已知数列{an},an>0,am•an=2m+n,m,n∈N*.
1个回答

解题思路:(1)令n=m=1可求得a1,然后令m=1,n=n+1,可得an,an+1,由等比数列的定义可判断,并求得通项公式;

(2)由nbn与Sn的关系可求得nbn,从而可得bn

a

n

(n+1)

b

n

,运用裂项相消法可求和;

(1)由题意得,a1•a1=22,a1>0,得a1=2,

且a1•an=21+n,a1•an+1=22+n,

所以

an+1

an=2,且an≠0,

所以:{an}为等比数列,通项公式an=2n;

(2)由Sn=n(n+1)an,当n=1时,得b1=1×(1+1)a1=4,

当n≥2时,Sn=n(n+1)•2n,①

Sn−1=n(n−1)•2n−1,②

①-②得nbn=n(n+3)•2n-1,即bn=(n+3)•2n−1,

b1=4满足上式,所以bn=(n+3)•2n−1,

所以

an

(n+1)bn=

2

(n+1)(n+3)=[1/n+1−

1

n+3],

所以

a1

2b1+

a2

3b2+

a3

4b3+…+

an

(n+1)bn

=[1/2−

1

4+

1

3−

1

5]+[1/4−

1

6]+…+

1

n−1−

1

n+1+

点评:

本题考点: 数列的求和;等比关系的确定.

考点点评: 本题考查等比数列的定义、通项公式,考查数列求和,裂项相消法对数列求和高考考查重点,应重点掌握.