隐函数求导y=2x*arctan(y/x)
1个回答

y=2x*arctan(y/x)

y/x=2*arctan(y/x)

u=y/x

u=2*arctanu

两边求解导数

dy/dx=2arctan(y/x)+2x*1/((y/x)^2+1)*(1/x*dy/dx-y/x^2)

=2arctan(y/x)+2x^3*1/(x^2+y^2)*(1/x*dy/dx-y/x^2)

=2arctan(y/x)+2x^2/(x^2+y^2)*dy/dx-2xy/(x^2+y^2)

(1-2x^2/(x^2+y^2))*dy/dx=2arctan(y/x)-2xy/(x^2+y^2)

(y^2-x^2)/(x^2+y^2)*dy/dx=2arctan(y/x)-2xy/(x^2+y^2)

dy/dx=(x^2+y^2)/(y^2-x^2)*[2arctan(y/x)-2xy/(x^2+y^2)

=2(x^2+y^2)/(y^2-x^2)*arctan(y/x)-2xy/(y^2-x^2)

二阶导数就不计算,太麻烦.

方法是一样的,再两边求解导数