设AD和BC的交点为P,
1.因△CPB∽△BPD,EP/DP=CP/BP,(EP/DP)+1=(CP/BP)+1,(EP+DP)/DP=(CP+BP)/BP,即ED/DP=BC/BP
所以 ED=DP*BC/BP
2.因△ACP∽△BDP,BD/AC=DP/CP,
所以 BD=AC*DP/CP
3.ED/BD=(DP*BC/BP)/(AC*DP/CP)=(BC/AC)*(CP/BP)
4.因AD是∠CAB的平分线,所以 CP/BP=AC/AB,带入上式
得 ED/BD=(BC/AC)*(AC/AB)=BC/AB
当AC=BC时,△ABC为直角等腰三角形,所以 ED/BD=BC/AB=(√2)/2
当AC=kBC时,AB=(√1+k²)*BC,所以 ED/BD=BC/AB=1/(√1+k²)