如图所示,一辆质量为1.5kg的小车静止在光滑水平面上,一个质量为0.50kg的木块,以2.0m/s的速度水平滑上小车,
1个回答

(1)根据运动过程中动量守恒得:

mv 0=(M+m)v 1
解得: v 1 =

m

M+m v 0 =0.5m/s

(2)根据动量定理得:

μmgt=Mv 1-0

t 1 =

M v 0

(M+m)μg =0.75s

(3)若M>m,从第一次木板以v 1反弹开始,有

Mv 1-mv 1=(M+m)v 2
Mv 2-mv 2=(M+m)v 3

Mv n-1-mv n-1=(M+m)v n
解得:

v 2 =

M-m

M+m v 1

v 3 =

M-m

M+m v 2

v n =

M-m

M+m v n-1 = (

M-m

M+m ) n-1

m

M+m v 0

根据动能定理得:

μm gx 1 =

1

2 mv 0 2 -

1

2 (M+m )v 1 2

μm gx 2 =

1

2 mv 1 2 -

1

2 (M+m )v 2 2

μm gx n =

1

2 mv n 2 -

1

2 (M+m)v n-1 2

解得:

x 1 =

M

2μg(M+m) v 0 2

x 2 =

2M

μg(M+m) v 1 2

x 3 =

2M

μg(M+m) v 2 2 =

2M

μg(M+m) (

M-m

M+m ) 2 v 1 2

x n =

2M

μg(M+m) v n-1 2 =

2M

μg(M+m) (

M-m

M+m ) 2(n-2) v 1 2

x 2,x 3,x 4,…x n是一个首项 为

2M

μg(M+m)

v 21

公比为 (

M-m

M+m ) 2 的等比数列,共有n-1项

S n = x 1 +

2M

μg(M+m)

v 21

n

n=2 (

M-m

M+m ) 2(n-2)

= x 1 +

2M

μg(M+m)

v 21 •

1- (

M-m

M+m ) 2(n-1)

1- (

M-m

M+m ) 2

=

M

2μg(M+m)

v 20 +

2M

μg(M+m)

v 21 •

1- (

M-m

M+m ) 2(n-1)

1- (

M-m

M+m ) 2

=

M

2μg(M+m)

v 20 +

2M

μg(M+m) • (

m

M+m ) 2

v 20 •

1- (

M-m

M+m ) 2(n-1)

1- (

M-m

M+m ) 2

=

M

v 20

2μg(M+m) +

m

v 20

2μg(M+m) •[1- (

M-m

M+m ) 2(n-1) ]

在板上滑行的时间(不包含从共速至与平台碰撞的时间)

-μmgt 2=Mv 2-Mv 1
-μmgt 3=Mv 3-Mv 2

-μmgt n=Mv n-Mv n-1
t 2 =
2M
μg(M+m) v 1
t 3 =
2M
μg(M+m) v 2 =
2M
μg(M+m) •
M-m
M+m v 1
t n =
2M
μg(M+m) v n-1 = t n =
2M
μg(M+m) •(
M-m
M+m ) n-2 v 1

t 2,t 3,t 4,…t n是一个首项 为

2M

μg(M+m) v 1 公比为 (

M-m

M+m ) 的等比数列,共有n-1项

t n = t 1 +

2M

μg(M+m) v 1

n

n=2 (

M-m

M+m ) n-2 = t 1 +

2M

μg(M+m) v 1 •

1- (

M-m

M+m ) (n-1)

1-(

M-m

M+m )

=

M v 0

(M+m)μg +

2M

μg(M+m) v 1 •

1- (

M-m

M+m ) (n-1)

1-(

M-m

M+m )

=

M v 0

(M+m)μg +

2M

μg(M+m) •

m

M+m v 0 •

1- (

M-m

M+m ) (n-1)

1-(

M-m

M+m )

=

M v 0

μg(M+m) •[2- (

M-m

M+m ) (n-1) ]

同理可得:若M<m,

x 2,x 3,x 4,…x n是一个首项为

2M

μg(M+m)

v 21

公比为 (

m-M

m+M ) 2 的等比数列,

共有n-1项

S n = x 1 +

2M

μg(M+m)

v 21

n

n=2 (

m-M

m+M ) 2(n-2)

= x 1 +

2M

μg(M+m)

v 21

n

n=2 (

m-M

m+M ) 2(n-2)

=

M

2μg(M+m)

v 20 +

2M

μg(M+m)

v 21 •

1- (

m-M

m+M ) 2(n-1)

1- (

m-M

m+M ) 2

=

M

2μg(M+m)

v 20 +

2M

μg(M+m) • (

m

M+m ) 2

v 20 •

1- (

m-M

m+M ) 2(n-1)

1- (

m-M

m+M ) 2

=

M

v 20

2μg(M+m) +

m

v 20

2μg(M+m) •[1- (

m-M

m+M ) 2(n-1) ]

在板上滑行的时间(不包含从共速至与平台碰撞的时间)

-μmgt 2=mv 2-mv 1
-μmgt 3=mv 3-mv 2

-μmgt n=mv n-mv n-1
t 2 =

2m

μg(m+M) v 1

t 2 =

2m

μg(m+M) v 2 =

2m

μg(m+M) •

m-M

m+M v 1

所以 t n =

2m

μg(m+M) v n-1 =

2m

μg(m+M) •(

m-M

m+M ) n-2 v 1

t 2,t 3,t 4,…t n是一个首项 为

2m

μg(m+M) v 1 ,公比为 (

m-M

m+M ) 的等比数列,共有n-1项

t n = t 1 +

2m

μg(m+M) v 1

n

n=2 (

m-M

m+M ) n-2 = t 1 +

2m

μg(m+M) v 1 •

1- (

m-M

m+M ) (n-1)

1-(

m-M

m+M )

=

M v 0

(M+m)μg +

2m

μg(m+M) v 1 •

1- (

m-M

m+M ) (n-1)

1-(

m-M

m+M )

=

M v 0

(M+m)μg +

2m

μg(m+M) •

m

M+m v 0 •

1- (

m-M

m+M ) (n-1)

1-(

m-M

m+M )

=

M v 0

(M+m)μg +

m 2 v 0

μgM(m+M) •[1- (

m-M

m+M ) (n-1) ] .

答:(1)木块与小车共同运动的速度的大小为0.5m/s;

(2)木块在小车上相对滑行的时间为0.75s;

(3)从木块滑上小车开始到木块与小车第n共同运动的时间为

M v 0

μg(M+m) •[2- (

M-m

M+m ) (n-1) ] 或

M v 0

(M+m)μg +

m 2 v 0

μgM(m+M) •[1- (

m-M

m+M ) (n-1) ] ,木块在小车上滑行的路程为

M

v 20

2μg(M+m) +

m

v 20

2μg(M+m) •[1- (

M-m

M+m ) 2(n-1) ] 或

M

v 20

2μg(M+m) +

m

v 20

2μg(M+m) •[1- (

m-M

m+M ) 2(n-1) ] .