已知三角形ABC的三边a>b>c且a+c=2b,A-C=90,求a:b:c
1个回答

∵ a+c=2b,A-C=90°,

由正弦定理得

sinA+sinC=2sinB

sinC=sin(A-90° )=-cosA

cosC=cos(A-90°)=sinA

∵ A+B+C=180°

sinA+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC

sinA+sinC=2sinAcosC+2cosAsinC

sinA+sinC-2sinAcosC-2cosAsinC=0

sinA-cosA -2sinA sinA +2cosAcosA =0

2 sin^2A+2 sinAcosA –sinA-2 sinAcosA-2cos^2A+cosA=0

(sinA-cosA)(2sinA+2cosA-1)=0

∵A-C=90°,A=C+90°A≠45°

sinA-cosA=0 不成立.

∴2sinA+2cosA-1=0

sinA+cosA=1/2

sin^2A+cos^2A+2sinAcosA=1/4

2sinAcosA=(1/4)-1=-3/4

2sinAsinC=3/4

sinAsinC=3/8

4sin^2B=(sinA+sinC)^2=sinA^2+sinC^2+3/4=sinA^2+cosA^2+3/4=7/4

sinB=√7/4

sinA+sinC=2sinB

sinA+sinC=√7/2

sinAsinC=3/8

sinA,sinC是方程x^2-√7/2x+3/8=0 两根

sinC=(2√7-1)/8

sinA=√7/2-(2√7-1)/8 =(2√7+1)/8

sinB=√7/4

a:b:c= sinA:sinB:sinC=(2√7+1)/8

:√7/4:(2√7-1)/8=2√7+1:2√7:2√7-1

a:b:c=2√7+1:2√7:2√7-1

希望给你有所帮助.

吉林 汪清