如图,已知Rt△SBC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F连接CD,EB.求证CF=EF
3个回答

证法一:连接CE,

∵Rt△ABC≌Rt△ADE,

∴AC=AE.

∴∠ACE=∠AEC.

又∵Rt△ABC≌Rt△ADE,

∴∠ACB=∠AED.

∴∠ACE=∠ACB=∠AEC-∠AED.

即∠BCE=∠DEC.

∴CF=EF.

证法二:∵Rt△ABC≌Rt△ADE,

∴AC=AE,AD=AB,∠CAB=∠EAD,

∴∠CAB-∠DAB=∠EAD-∠DAB.

即∠CAD=∠EAB.

∴CD=EB,∠ADC=∠ABE.

又∵∠ADE=∠ABC,

∴∠CDF=∠EBF.

又∵∠DFC=∠BFE,

∴△CDF≌△EBF.

∴CF=EF.

证法三:连接AF,

∵Rt△ABC≌Rt△ADE,

∴AB=AD,BC=DE,∠ABC=∠ADE=90°.

又∵AF=AF,

∴Rt△ABF≌Rt△ADF(HL).

∴BF=DF.

又∵BC=DE,

∴BC-BF=DE-DF.

即CF=EF.