两题前提都是n趋于无穷大1.lim n[e-(1+1/n)^n]=?2.lim n(n的1/n次方-1)=?兔宝宝蹦蹦谢
3个回答

抱歉啊,昨天不好意思把e漏掉了,多亏你提醒.现在我已改了,而且还漏了"-"号,原答案中"-"号去掉:

1.此为无穷*0型,先改写成0/0型,再用洛比达法则:

=lim[e-(1+1/n)^n]/(1/n) n→+∞

分子改写成e指数:

=lim {e-e^[nln(1+1/n)]}/(1/n)

由洛比达法则:

=lim (-e^[nln(1+1/n)])[ln(1+1/n)-1/(n+1)]/(-1/n²)

=lim (-e)[ln(1+1/n)-1/(n+1)]/(-1/n²)

=lim e[ln(1+1/n)-1/(n+1)]/(1/n²)

由洛比达法则:

=lim e[-1/n(n+1)+1/(n+1)²]/(-2/n³)

=lim e[-1/n(n+1)²]/(-2/n³)

=lim e[n³/2n(n+1)²]

=e/2

2.此题用等价无穷小代换:

a^x-1≈xlna,x→0

原极限=n[n^(1/n)-1] n→+∞

=n[(1/n)lnn]

=lnn

=+∞