开发商欲对边长为1km的正方形ABCD地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路EF
1个回答

(1)设CE=x,CF=y(0<x≤1,0<y≤1),∠BAE=α,∠DAF=β

则tanα=(1-x)/1=(1-x),tanβ=(1-y)/1=(1-y)

由已知得:S△ECF=x+y+ √(x²+y²) =2,

即2(x+y)-xy=2 -xy=2-2(x+y)

∴tan(α+β)=(tanα+tanβ) /(1-tanαtanβ) =[2-(x+y)]/( x+y-xy) =[2-(x+y0]/[(x+y)+2-2(x+y)]=1

∵0<α+β<π 2 ,

∴α+β=π /4

∴∠EAF=90°-45°=45°

(2)由(1)知,S△EAF=1 /2 AE×AF×sin∠EAF

= √2/4 AE×AF

=√2/4 ×(1/ cosαcosβ)

=√2/4 ×(1 /cosαcos(π/ 4 -α)

=1/( sin2α+2cos²α)

=1/ (√2sin(2α+π/4 )+1 )

∵0<α<π/4 ,

∴2α+π/4 =π/2 ,即α=π/ 8 时,△EAF的面积最小,最小面积为 √2 -1.

∵tanπ/4 =(2tanπ/8)/( 1-tan²π/8) ,

∴tanπ/8 =√ 2 -1,故此时BE=DF= √2 -1.

所以,当BE=DF=√ 2 -1时,△EAF的面积最小.