[解] (1)∵Rt△EFG∽Rt△ABC ,
∴,.
∴FG==3cm.
∵当P为FG的中点时,OP‖EG ,EG‖AC ,
∴OP‖AC.
∴ x ==×3=1.5(s).
∴当x为1.5s时,OP‖AC .
(2)在Rt△EFG 中,由勾股定理得:EF =5cm.
∵EG‖AH ,
∴△EFG∽△AFH .
∴.
∴.
∴ AH=( x +5),FH=(x+5).
过点O作OD⊥FP ,垂足为 D .
∵点O为EF中点,
∴OD=EG=2cm.
∵FP=3-x ,
∴S四边形OAHP =S△AFH -S△OFP
=·AH·FH-·OD·FP
=·(x+5)·(x+5)-×2×(3-x )
=x2+x+3
(0(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:24.
则S四边形OAHP=×S△ABC
∴x2+x+3=××6×8
∴6x2+85x-250=0
解得 x1=,x2= -(舍去).
∵0∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:24.
详细 27题