圆内接四边形ABCD的两边AB,CD的延长线交于点E,DF经过圆O的圆心,交AB于F,AB=BE,OD=3,FA=FB=
1个回答

1、连结BD、AO,

∵AF=BF,

∴OF⊥AB,

RT△DAF≌RT△DFB,

〈DAF=〈FBD,

〈ABD=〈ACD(同弧圆 周角相等),

〈ACD=〈DAE,

〈ADC=〈CDA(公用),

∴△DAC∽DEA.

2、OA=OD=3,AF=√5,

根据勾股定理,OF=2

DF=,

AD=√(DF^2+AF^2)=√30.

△DAC∽DEA,

AD/CD=DE/AD,

AD^2=DE*CD,

DE*CD=30,.(1)

AB=BE=2√5,AE=4√5,

而根据割线定理可知,

CE*DE=BE*AE=2√5*4√5=40,.(2),

(1)+(2),

DE*(CD+CE)=70,

DE^2=70,

DE=√70,

CE=4√70/7,

CD=3√70/7,

AC/AE=AD/DE,

AC=4√105/7.