∠BAC:∠ABC:∠ACB=27:5:4
即∠1:∠2:∠3=27:5:4
∠1=180°*27/36=135°
∠2=180°*5/36=25°
∠3=180°*4/36=20°
(1)∠DAB=360°-∠1-∠DAC=360-2∠1=90°
∠CDA=∠ABE
则∠BFD=DAB=90°
∠EFC=∠BFD=90°
(2) ∠EFC=90° 且∠EPD=∠CPA ∠DCA=∠BEP
∠EAP=90° AC=AE 即△ACE为等腰直角三角形
得∠ACE=45° ∠BCE=∠BCA+∠ACE=65°
同理可得,△ABD为等腰直角三角形
∠ABD=45° ∠DBC=∠DBA+∠ABC=70°
故∠BGC=180° - ∠DBC-∠BCE=180°-65°-70°=45°