1.等差数列{an}中,S9 = 18,Sn-4 = 30(n>9).若Sn = 240,求n.
2个回答

1.

an=a+(n-1)d

sn=na+n(n-1)d/2

s9=9a+36d=18,a+4d=2,

s(n-4)=(n-4)a+(n-4)(n-5)d/2=30

sn=na+n(n-1)d/2=240,

sn-s(n-4)=4a+(4n-10)d=240-30=210

2a+(2n-5)d=105

2(2-4d)+(2n-5)d=105

(2n-13)d=101

d=101/(2n-13)

a=2-4d=2-404/(2n-13)=(4n-430)/(2n-13)

s(n-4)=(n-4)a+(n-4)(n-5)d/2

=(n-4)(4n-430)/(2n-13)+202(n-4)(n-5)/(2n-13)

=30

sn=na+n(n-1)d/2

=n(4n-430)/(2n-13)+202n(n-1)/(2n-13)

=240

(n-4)(4n-430)+202(n-4)(n-5)=30(2n-13)

n(4n-430)+202n(n-1)=240(2n-13)

206n^2-2770n+5999=0

206n^2-1112n+3120=0

无解.

2.

设an=a+(n-1)d

sn=na+n(n-1)d/2

s10=10a+45d=140

a+4.5d=14

s奇=a1+a3+a5+a7+a9=5a+20d=125

a+4d=25

d=-22,a=113

an=113-22(n-1)=-22n+135

a6=-132+135=3;

3.若等差数列{an}的前4项和为25,后4项和为63,前n项和为286,求n

设an=a+(n-1)d

sn=na+n(n-1)d/2

s4=4a+6d=25

sn-s(n-4)=[na+n(n-1)d/2]-[(n-4)a+(n-4)(n-5)d/2]

=4a+(4n-10)d

=63

sn=na+n(n-1)d/2=286

所以

4a+6d=25

4a+(4n-10)d=63

na+n(n-1)d/2=286

用a=(25-6d)/4代入:

(2n-8)d=19

25n+(2n-8)dn=572

25n+19n=572

44n=572

n=13.