圆柱的高 H = 2r, r是圆柱端面的半径.
求解如下:
已知圆柱和球体积相同,所以有,
pi*r^2*H = (4/3)*pi*R^3
=>H = (4/3)R^3/r^2 (1)
圆柱表面积是:
S = 2*pi*r^2 + 2*pi*r*H (2)
代入方程(1),有:
S = 2*pi*r^2 + (8/3)*pi*R^3/r (3)
求上式的极值,将上式两边对r求导,得到:
ds/dr = 4*pi*r - (8/3)*pi*R^3/r^2
令ds/dr = 0, 得:r^3 = (2/3)*R^3
再代回(1)得到:
H = 2r
表面积是 S_柱 = 6*pi*r^2 = 6*pi*(2/3)^(2/3)*R^2 = 4.579*pi*R^2 = 1.1447 S_球